Mining Frequent Synchronous Patterns based on Item Cover Similarity
نویسندگان
چکیده
منابع مشابه
Item Set Mining Based on Cover Similarity
While in standard frequent item set mining one tries to find item sets the support of which exceeds a user-specified threshold (minimum support) in a database of transactions, we strive to find item sets for which the similarity of their covers (that is, the sets of transactions containing them) exceeds a user-specified threshold. Starting from the generalized Jaccard index we extend our approa...
متن کاملCover Similarity Based Item Set Mining
In standard frequent item set mining one tries to find item sets the support of which exceeds a user-specified threshold (minimum support) in a database of transactions. We, instead, strive to find item sets for which the similarity of the covers of the items (that is, the sets of transactions containing the items) exceeds a user-defined threshold. This approach yields a much better assessment ...
متن کاملStatistical evaluation of synchronous spike patterns extracted by frequent item set mining
We recently proposed frequent itemset mining (FIM) as a method to perform an optimized search for patterns of synchronous spikes (item sets) in massively parallel spike trains. This search outputs the occurrence count (support) of individual patterns that are not trivially explained by the counts of any superset (closed frequent item sets). The number of patterns found by FIM makes direct stati...
متن کاملFrequent item set mining
Frequent item set mining is one of the best known and most popular data mining methods. Originally developed for market basket analysis, it is used nowadays for almost any task that requires discovering regularities between (nominal) variables. This paper provides an overview of the foundations of frequent item set mining, starting from a definition of the basic notions and the core task. It co...
متن کاملMining Frequent Patterns Based on Data Characteristics
Frequent pattern mining is crucial part of association rule mining and other data mining tasks with many practical applications. Current popular algorithms for frequent pattern mining perform differently: some are good for dense databases while the others are ideal for sparse ones. In our previous research, we developed a new frequent pattern mining algorithm named FEM that runs fast on both sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Intelligence Systems
سال: 2018
ISSN: 1875-6883
DOI: 10.2991/ijcis.11.1.39